
Chapter 7

Privacy-preserving inference
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The goal of this chapter is give a quick overview of privacy concerns in statistical inference, and to
present a few standard statistical modellings designed to address the question. For further inspection
of the topic, the interested reader shall refer to [Vad17], and to the lecture slides and practical sessions
of Aurélien Bellet.

7.1 Introduction

7.1.1 Motivation

The classical statistical framework, based on data points, is usually referred to as PAC-learning [Val84]
or sample framework. In this setting, the learner is given a set {x1, . . . , xn} of n samples drawn, most
commonly independently, from an unknown distribution P . From these samples, the learner then
aims at estimating a parameter of interest θ(P ) with high probability, and can use any technique (or
algorithm) based on these samples.

Beyond this classical and almighty statistical setting, the modern practice of statistics raised con-
cerns that naturally bring up to consider quantitative and qualitative estimation constraints. For in-
stance, in many applications of learning methods, the studied data is contributed by individuals, and
features represent their possibly private characteristics such as race, browsing history, geolocation, or
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health history. The disclosure of such personal data can be harmful to the individuals. Hence, it is
essential not to reveal too much information about any particular individual.

Keep in mind that even though one may think that they have nothing to hide, the most insignifi-
cant and ordinary facts may also be problematic if an individual is followed over time. For instance, if
Alice buys bread every day for 20 years and then suddenly stops, then an analyst might conclude that
Alice has been diagnosed with type 2 diabetes.

7.1.2 A few bad ideas

Anonimization is not safe A first idea towards privacy is to anonimize data by erasing the variables
that yield obvious identification (name, address, age, etc), and then publish the resulting censored
dataset. Unfortunately, this appears useless in practice, because the remaining data, still very rich, of-
ten suffices to recover which individual correspond to which person. For instance, it has been shown
that in 2000, 87% of the U.S. population were be uniquely identifiable from the triple of their ZIP code,
gender, and date of birth [NHF16]. Said otherwise, everything can turn out to quasi-identify individ-
uals, especially in high-dimensional and sparse databases. Furthermore, combination of knowledge
coming from another data source may also enable an adversary to de-anonimize both.

Aggregating statistics is not safe A seemingly more viable method would be to never publish data,
and to mediate its access via a trusted interface (or oracle) that will only respond certain data queries.
It is, however, very difficult to ensure that such a system does protect privacy: what rule should deter-
mine which query is valid (i.e. privacy-preserving) and which query is not?

For instance, such a system should forbid differencing attacks: combining aggregate queries to
obtain precise information about specific individuals: “Average salary in a neighborhood before/after
a family moving in”. Here, we see that a combination of results from several queries can target an
individual even though every single queries do not appear to do so. Hence, this can be hard to detect.

7.1.3 Toy examples in poll theory

Beyond ethical considerations leading to handle existing data privately, let us mention that ensuring
some notion of privacy when collecting data can also benefit the learner, as we now illustrate.

Within a given population, say that you want to design a poll that measures the proportion p ∈ [0,1]
of an opinion (or trait), but for which you know that people may not answer honestly. For instance,
think to poll questions such as “Did you cheat at this exam?”, “Do you fraud tax?”, or “Do you support
this sulfurous politician?”. For a given individual i ∈ {1, . . . ,n}, write Xi ∈ {0,1} for the true opinion
(Yes/No) of person i , so that (Xi )i≤n is an iid n-sample with common distribution Bernoulli(p).

In such a context, asking directly the question of interest to the individuals would lead to social bi-
ases that are difficult (if not impossible) to measure. That is, we would not observe (Xi )i≤n directly, but
(wildly) censored versions of it. To overcome this challenge and encourage individuals to answer hon-
estly, the statistician shall hence use tricks when designing the poll. The idea is to have the individual
feel1 that their personal statement is kept private and protected.

Self-randomized response

A first strategy consists in introducing external randomness that the individual controls, so as to pro-
tect their privacy and hence induce honesty from them. More specifically, the instructions of the poll
could be as follows:

1Purposely vague notion here! Privacy is mathematically formalized below.
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• Flip two coins and keep the result of the flips secret.

• If you flipped:

– Zero or one Tails, answer the question honestly.

– Two Heads, answer the opposite of your actual opinion2.

The fact that the individual keeps their coin flip secret in fundamental: it is the encryption key that
leads to the privacy of their answer.

Write φ ∈ [0,1]\{1/2} for the probability to be in the first option (i.e. not flipping two Heads). Then
if Zi is the answer of individual i ∈ {1, . . . ,n} to this poll, one easily checks that Zi ∼ Bernoulli

(
pφ+(1−

p)(1−φ)
)
.

Exercise 7.1. Build an estimator and an asymptotic confidence interval for p based on (Zi )i≤n when
n →∞.

One may imagine other external randomness generators that coin flips, so thatφ ∈ [0,1] could take
any value. Intuitively, this parameter drives how private the poll keeps the individuals’ opinion. The
poll is not private at all for φ = 0, and the “privacy” increases as φ increase. On the other hand, the
larger φ, the more the information is lost about p: there seem to be a privacy VS estimation tradeoff.

Asking extra insignificant questions

To bypass the use of an additional randomization scheme while still encouraging honesty, a second
strategy consists in “drowning” personal information Xi by adding other questions to the poll. That
is, if Question 1 asks for the (disputable) opinion of interest, we can adjunct some unrelated and in-
significant Question 2 to it. For instance, Question 2 could be “Have you ever visited Brittany?”, or “Do
you practice cycling?”? The poll would hence be as follows:

Among Question 1 and Question 2, is your true answer “Yes” to at least one of them?

By its insignificance, it is Question 2 that effectively ensures privacy of the global answer.
Formally, if (Xi ,Yi ) ∈ {0,1}× {0,1} writes for the couple of true opinions of individual i ∈ {1, . . . ,n}

on Question 1 and Question 2 respectively, this poll only asks individuals to reveal Zi = max{Xi ,Yi }. If
the (Xi ,Yi )’s are independent couples (i.e. uncorrelated questions) and that the Yi ’s are independent
copies with distribution Bernoulli(q) for some q ∈ [0,1], then the Z ′

i s are iid Bernoulli(p +q −pq).

Exercise 7.2. If (Y ′
j ) j≤m is a m-sample of Bernoulli(q) come from another (regular) poll with Ques-

tion 2, build an asymptotic confidence interval for p based on (Zi )i≤n and (Y ′
j ) j≤m when m,n →∞.

Note that here, compared to the previous strategy where we controlled the randomness of the coin
flip, the nuisance parameter q has to be estimated separately. This naturally induces more uncertainty.

7.2 Differential privacy

7.2.1 Datasets and histograms

In the framework to come, a trusted party holds a dataset on n individuals, represented by a tuple
D = (x1, . . . , xn) ∈X n where X is the space of realizations.

Privacy can in fact formalize the need for hiding the very presence of an individual in dataset.
This will naturally bring us to consider dataset with different sizes. To put all the datasets in the same

2A variant could be: answer “Yes” regardless of the person’s actual opinion

https://www.random.org/coins/?num=2&cur=40-antique.antonius-pius
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space, it will hence be convenient to represent D ∈ X n as a histogram D ∈ NX = N|X | Namely, if
X = {v1, . . . , vK }, then for all k ∈ {1, . . . ,K },

Dk := |{xi ∈ D | x = vk }|.

In particular, the size of the dataset is n = ∥D∥1 =∑K
k=1 Dk . With this notation, the ℓ1 norm also allows

to define neighboring datasets.

Definition 7.3 (Neighboring datasets). Two datasets D,D ′ ∈NX are said to be neighboring if they differ
by at most one element, i.e. ∥D −D ′∥1 ≤ 1.

With this definition, two neighboring datasets only differ by either the addition or the removal of
an individual’s data. Similarly, changing value xi into x ′

i ̸= xi yields datasets with ∥D −D ′∥1 = 2.

7.2.2 Randomized algorithm and differential privacy

The seminal paper [KLN+11] on private learning introduces a learning framework inspired by differ-
entially private algorithms [DMNS06]. Given samples {x1, . . . , xn}, this constraint imposes privacy to a
learner by requiring it not to be significantly affected if a particular sample xi is removed (see Defini-
tion 7.5).

Formally, to make sure that information about individuals are not disclosed, the statistician will
only access information on this data through a so-called randomized algorithm.

Definition 7.4 (Randomized algorithm). A randomized algorithm is a map A :N|X | →O , where O is a
probability space.

Said otherwise, a randomized algorithm A :N|X | → O defines a O-valued random variable A (D)
for all (fixed) D ∈N|X |. By definition, we measure the degree of differential privacy of an algorithm by
is its stochastic sensitivity to its input data D3.

Definition 7.5 (Differentially private (DP) algorithm). For ε > 0 and 0 < δ < 1, we say that A is (ε,δ)-
differentially private if for all D,D ′ ∈N|X | such that ∥D −D ′∥1 ≤ 1 and all measurable S ⊂O ,

P(A (D) ∈ S) ≤ eεP(A (D ′) ∈ S)+δ,

where the probability is taken with respect to randomness of A .

In contrast to anonymization, we insist on the fact that differential privacy is a property of the data
analysis pipeline, and not a property of a particular output. In the above definition, data are consid-
ered fixed and not random. In fact, the algorithm A can be made public, with only the randomness
used to generate it needing to be kept secret. This underscores a critical aspect of contemporary se-
curity, rejecting the outdated concept of “security by obscurity”. This feature also facilitates open
discussions about the algorithms and their guarantees.

Remark 7.6. (ε,0)-DP is often called pure ε-DP. It guarantees that at each independent run of A (D),
the output is almost equally likely to be observed than for any neighboring dataset D ′. In practice,
ε = 1 (e1 ≃ 2.7) is considered reasonable, and ε = 0.1 (e0.1 ≃ 1.1) is considered to yield strong privacy
guarantees.

3For infinite space of realizations X , defining differential privacy requires conditional distributions, through the notion of
Markov transition kernel, which we chose not to cover for sake of simplicity
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If O is finite, the log-likelihood ratio

LA (D),A (D ′)(θ) := log

(
P(A (D) = θ)

P(A (D ′) = θ)

)
is called privacy loss. To satisfy (ε,δ)-differential privacy, it is sufficient that for all θ ∈ O and all ∥D −
D ′∥1 ≤ 1,

Pθ∼A (D)
(
LA (D),A (D ′)(θ) ≤ ε)≥ 1−δ.

A priori, differential privacy does not provide an assurance that an individual’s sensitive datum xi

will remain undisclosed. However, it safeguards — in a quantified manner — against the disclosure of
one’s participation in a survey and prevents the revelation of any specific contributions made to the
survey.

Following the economic view of [DR+14, Section 2.3.1], suppose that an individual i ∈ {1, . . . ,n} has
a utility function u : O → R defined based on the outcome of an (ε,δ)-DP algorithm A :N|X | → O . If
D is the dataset including their individual data and D−i is the same dataset with their individual data
removed, then

e−εE[u(A (D−i ))]−δ∥u∥∞ ≤ E[u(A (D))] ≤ eεE[u(A (D−i ))]+δ∥u∥∞.

Hence, the expected utility of any user i is affected by a factor of at most e±ε ≃ 1±ε, when participating
(or not) in a differentially private release. This reasoning also applies to censoring/not censoring one’s
datum, and it works regardless of the utility function u : O →R+.

7.2.3 Structure

Differential privacy fulfills desirable structural properties which we now detail. First, it is robust
against post-processing: without additional knowledge about the private database, one cannot ma-
nipulate the output of a private algorithm A (D) to compromise its level of differential privacy.

Proposition 7.7 (Postprocessing). Let A : N|X | → O be an (ε,δ)-differentially private algorithm, and
f : O → O ′ be a (randomized) measurable function (independent from A ). Then f ◦A : N|X | → O ′ is
(ε,δ)-differentially private.

Independence of f and A is crucial. Indeed, if A is one-to-one (says A (D) = D + Z with random
Z ), then f =A −1 yields a non differentially private composition f ◦A = Id.

Proof. Let ∥D −D ′∥1 ≤ 1 and S′ ⊂ O ′ be measurable. Write S := f −1(S′). Because A is (ε,δ)-DP and
f ⊥⊥A we have almost surely that

P( f (A (D)) ∈ S′ | f ) =P(A (D) ∈ S | f )

≤ eεP(A (D ′) ∈ S | f )+δ
= eεP( f (A (D ′)) ∈ S′ | f )+δ.

Taking the expectation on both sides of the above bound yields the result.

Similarly one may easily control the degree of differential privacy when several analyses of the
same dataset are released. With the chosen notation, general sequences of algorithms accumulate
privacy costs additively.
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Female Male

Lives in Paris 13 46
Doesn’t live in Paris 30 25

Table 7.1: Entry-wise differentially private contingency table

Proposition 7.8 (Simple composition). If A1, . . . ,AJ are independent (ε j ,δ j )-differentially private al-
gorithms, then

A (D) := (A1(D), . . . ,AJ (D))

is (ε,δ)-differentially private, with

ε :=∑J
j=1 ε j and δ :=∑J

j=1δ j .

Proof. The result is trivial for δ= 0. See [DR+14, Theorem B.1] for the general case.

For more advanced composition theorems, see [DR+14, Section 3.1]. Let us mention the following
simple one.

Exercise 7.9 (Parallel composition). If A1(D1), . . . ,AJ (D J ) are independent (ε j ,δ j )-differentially pri-
vate algorithms on different datasets, show that

A (D1, . . . ,D J ) := (A1(D1), . . . ,AJ (D J ))

is (max j≤J ε j ,max j≤J δ j )-differentially private. As an example, suppose that one surveys a population,
and produces contingency Table 7.1. If each entry is (ε,δ)-DP, then any pair of entries is also (ε,δ)-DP.
However, triples and the quadruplet might not be, as they are built on overlapping populations.

With the above definition of privacy given at the individual level, one may be interested in its con-
sequences on groups of individuals. This question becomes particularly critical if N individuals have
highly correlated data, or that a single individual contributes N times to the dataset.

Proposition 7.10 (Group-differential privacy). An (ε,δ)-differentially private algorithm is (Nε, NeNεδ)-
diffentially private for groups of size N . That is, for all D,D ′ ∈ N|X | such that ∥D −D ′∥1 ≤ N and all
measurable S ⊂O ,

P
(
A (D) ∈ S

)≤ eNεP
(
A (D ′) ∈ S

)+NeNεδ.

Note that this is a completely distinct result from that on the stability under composition (Propo-
sition 7.8).

Proof. Let D =: D0,D1, . . . ,DN := D ′ be such that ∥Di+1 − Di∥1 ≤ 1 for all i ∈ {0, . . . , N − 1}. For all
measurable S ⊂O , we apply the definition sequentially to get

P
(
A (D0) ∈ S

)≤ eεP
(
A (D1) ∈ S

)+δ
≤ eε

(
eεP

(
A (D2) ∈ S

)+δ)+δ
...

≤ eNεP
(
A (DN ) ∈ S

)+ (
1+eε+e2ε+ . . .+e(N−1)ε)δ

≤ eNεP
(
A (D ′) ∈ S

)+NeNεδ,

where the last line comes from the AM–GM inequality (u0 + . . .+uN−1)/N ≤ (u0 . . .uN−1)1/N .



CHAPTER 7. PRIVACY-PRESERVING INFERENCE 95

7.2.4 General privacy mechanisms

In this section, we will detail a few basic ways to privatise a function. That is, suppose that we want to
“evaluate” a function of interest f :N|X | →O on confidential data D . We will exhibit explicit construc-
tions of A (D) that are provably differentially private, while still close to the actual value f (D).

Laplace mechanism

We first deal with the case where f :N|X | →Rd is vector-valued.

Definition 7.11 (Global ℓ1 sensitivity). The global ℓ1 sensitivity of f :N|X | →Rd is defined as

∆1( f ) := max
∥D−D ′∥1≤1

∥ f (D)− f (D ′)∥1.

To be sure, the first ∥ · ∥1 norm is on histograms N|X |, and the second one is on Rd . The quantity
∆1( f ) measures how much f is affected by a change of a single value in the dataset. It naturally yields
a minimal order of magnitude required to mask the contribution of an individual to f (D).

Example 7.12.

• If f (D) := #{inhabitants of Paris in D}, then ∆1( f ) = 1;

• If f (D) := average salary, then ∆1( f ) ≤ (maximum salary)/n.

Given b > 0, we recall that the Laplace distribution Laplace(b) is the distribution on R that has
density

p(y,b) := 1

2b
e−|y |/b , y ∈R

with respect to the Lebesgue measure. If Y ∼ Laplace(b), then

• E[Y ] = 0, E[|Y |] = b, E[Y 2] = 2b2

• For all t ≥ 0, P(|Y | ≥ tb) ≤ e−t .

The Laplace distribution is the building block of the eponymous privatisation mechanism.

Definition 7.13 (Laplace mechanism). For f :N|X | →Rd and ε> 0, we write

ALaplace(D, f ,ε) := f (D)+Y ,

where Y = (Y1, . . . ,Yd ) is a iid sequence of random variables Y j ∼ Laplace
(
∆1( f )/ε

)
Here, the idea is simply to perturb the output f (D) by adding random noise coordinate-wise, at a

scale given by the ℓ1 sensitivity and a target level of privacy. In practice, it requires to compute ∆1( f ),
or an upper bound on it.

Proposition 7.14. For all ε> 0, ALaplace(·, f ,ε) is (ε,0)-differentially private.

Proof. Let ∥D −D ′∥1 ≤ 1 and S ⊂ Rd be measurable of non-empty interior, and write b := ∆1( f )/ε for
short. The random variables ALaplace(D, f ,ε) and ALaplace(D ′, f ,ε) have densities with respect to the

Lebesgue measure in Rd . Denoting them by g and g ′ respectively, we have

P
(
ALaplace(D, f ,ε) ∈ S

)
P
(
ALaplace(D, f ,ε) ∈ S

) = ∫
S g (y)d y∫
S g ′(y)d y

≤ sup
y∈S

g (y)

g ′(y)
,
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where the last inequality if Hölder inequality. Furthermore, by construction of ALaplace(·, f ,ε), for all

y ∈Rd ,

g (y) =
d∏

j=1

1

2b
e−|y j − f j (D)|/b

= 1

(2b)d
e−∥y− f (D)∥1/b ,

and similarly for g ′(y). As a result, triangle inequality for ℓ1 norm yields

g (y)

g ′(y)
= exp

(−(∥y − f (D)∥1 −∥y − f (D ′)∥1)/b
)

≤ exp
(∥ f (D)− f (D ′)∥1/b

)
.

Since b ≥ ∆1( f )/ε, the term in the exponential is further bounded by ∥ f (D)− f (D ′)∥1/b ≤ ε, which
yields the result.

Naturally, pure random output or constant A would also lead to a differentially private algorithm.
As opposed to such trivial examples, the Laplace mechanism has the extra property of staying close to
f with high probability. In the field, such a property is called utility.

Proposition 7.15 (Utility of the Laplace mechanism). For all β ∈ (0,1],

P

(
∥ALaplace(D, f ,ε)− f (D)∥∞ ≤ log

(
d/β

) ∆1( f )

ε

)
≥ 1−β,

and

E
[∥ALaplace(D, f ,ε)− f (D)∥1

]= d
∆1( f )

ε

Proof. The first bound comes directly from the tail bound of Laplace distribution, and the bound in
expectation from E[|Y |] = b when Y ∼ Laplace(b).

Note the tradeoff between the level of privacy ε and the subsequent output precision of order
O(∆1( f )/ε). Theory of differential privacy actually is all about finding the best privacy parameter ε
given a target precision or conversely, finding the most precise mechanism under ε-DP constraint.

Gaussian mechanism

It is sometimes more convenient to handle Gaussian perturbations than Laplace ones. For instance,
when data noise is itself Gaussian, one may use the additive stability of the Gaussian distribution to
understand finely how privacy and statistical precision interact. Because of the form of its density,
Gaussian perturbations blend well with a ℓ2-type sensitivity.

Definition 7.16 (Global ℓ2 sensitivity). The global ℓ2 sensitivity of f :N|X | →Rd is defined as

∆2( f ) := max
∥D−D ′∥1≤1

∥ f (D)− f (D ′)∥2.

Paralleling the Laplace mechanism, the Gaussian privatisation mechanism has a straightforward
definition, but with a twist.
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Definition 7.17 (Gaussian mechanism). For f :N|X | →Rd , ε> 0 and δ> 0, we write

AGaussian(D, f ,ε,δ) := f (D)+Y ,

where Y = (Y1, . . . ,Yd ) is a iid sequence of random variables Y j ∼N
(
0,σ2

)
, with

σ :=
√

2log(1.25/δ)
∆2( f )

ε
.

Parameterδ> 0 is the price to pay for handling Gaussian noise, and yields a provable (ε,δ)-differential
privacy mechanism.

Proposition 7.18. For all ε> 0 and δ> 0, AGaussian(·, f ,ε,δ) is (ε,δ)-differentially private.

Proof. See [DR+14, Appendix A]

When δ≪ 1, the difference between ε-DP and (ε,δ)-DP is considered not significant in practice.

Proposition 7.19 (Utility of the Gaussian mechanism). For all β ∈ (0,1],

P

(
∥AGaussian(D, f ,ε,δ)− f (D)∥∞ ≤

√
2log(1.25/δ) log

(
d/β

)∆1( f )

ε

)
≥ 1−β,

and

E
[∥AGaussian(D, f ,ε,δ)− f (D)∥2

]≤√
2d log(1.25/δ)d

∆2( f )

ε
.

This result is the opportunity to note another interesting feature of the Gaussian mechanism: the
Gaussian tails O(

√
log(1/δ)) instead of exponential ones in O(log(1/δ)) for the Laplace mechanism.

Remark 7.20 (Integer-valued mechanisms). The above mechanisms apply to any general function f :
N|X | → Rd , and produce random outputs having support in the entire continuous space Rd . If the
initial function is discrete, say f : N|X | → N, then one may want to preserve this qualitative property
after privatization. Specific mechanisms are designed for this, the main one using truncated geometric
distributions [GRS09].

Exponential mechanism

The Laplace and Gaussian mechanisms are specifically designed for numeric (vector-valued) func-
tions, on which norms yield natural precision criteria. They are precise when f (D) is regular enough
in its variable D , in the sense that ∆1( f ) or ∆2( f ) are small enough.

When the output space O is finite and unstructured, the user needs to choose a score function

s :N|X |×O →R,

where s(D,θ) represents how satisfactory it is to return output θ if the true value is f (D) is queried.
Score function s should hence be thought of as depending on f , with θ = f (D) yielding a maximal
value for θ 7→ s(θ,D).

Definition 7.21 (Sensitivity of score function). The sensitivity of a score function s :N|X |×O →R is

∆(s) := max
θ∈O

max
∥D−D ′∥1≤1

|s(D,θ)− s(D,θ′)|.

This notion actually is a generalization of the ℓ1 sensitivity seen above.
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Example 7.22. If f :N|X | →Rd and s(D,θ) :=−∥θ− f (D)∥p (p ∈ {1,2}), then ∆(s) =∆p ( f ).

As announced, we are especially interested in the case where O is finite and unstructured. In this
case, the idea of the exponential mechanism is to randomly output values θ ∈O non-uniformly, and to
upweight those values θ with high associated scores s(D,θ).

Definition 7.23 (Exponential mechanism). For ε > 0 and score function s : N|X | ×O → R, we write
Aexp(D, s,ε) for a random variable such that for all θ ∈O ,

P(Aexp(D, s,ε) = θ) =
exp

(
s(D,θ)ε

2∆(s)

)
∑
θ′∈O exp

(
s(D,θ′)ε

2∆(s)

) .

Note that here, the dependence in f :N|X | →O is completely implicit: it only appears through the
preliminary choice of the score function s :N|X |×O →R.

Proposition 7.24. For all ε> 0, Aexp(·, s,ε) is (ε,0)-differentially private.

Exercise 7.25. Prove Proposition 7.24.

Because of its design involving the exponential of the score function, the exponential mechanism
has strong utility guarantees. Indeed, for D ∈NX fixed, an output θ ∈O with score value s(D,θ) lower
than

s∗(D) := max
θ∈O

s(D,θ)

will be down-weighted exponentially compared to any output from

O∗(D) := argmax
θ∈O

s(D,θ)

maximizing the score function with D .

Proposition 7.26 (Utility of the exponential mechanism). For all β ∈ (0,1],

P

(
s
(
Aexp(D, s,ε)

)≥ s∗(D)−2log

( |O |
β|O∗(D)|

)
∆(s)

ε

)
≥ 1−β.

With high probability, this result asserts that Aexp(D, s,ε) yields nearly best score up to O(∆(s)/ε),
with a prefactor if |O∗(D)| is large.

Proof. See [DR+14, Theorem 3.11].

7.3 Other types of privacy formalism

7.3.1 Local differential privacy

Definition

In scenarios where a trustworthy third party is not available for doing the data analysis, one cannot use
the formalism of differential privacy. To guarantee confidentiality in such cases, we impose privacy at
the level of the individuals themselves.

Definition 7.27 (Local randomizer). A local randomizer is a randomized function R : X →Z .
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From there, a local version of differential privacy comes naturally, as the n = 1 sample version of
differential privacy.

Definition 7.28 (Locally differentially private (LDP) randomizer). A local randomizer R : X → Z is
said to be (ε,δ)-locally differentially private if for all x, x ′ ∈X and all measurable Z ⊂Z ,

P(R(x) ∈ Z ) ≤ eεP(R(x ′) ∈ Z )+δ

To come back to a class of global algorithms taking whole datasets into account, we will impose
dependency in such LDP randomizers as input.

Definition 7.29 (Locally differentially private (LDP) randomizer). An algorithm A :NZ →O is said to
be (ε,δ)-locally differentially private, if it can be written as

A (z1, . . . , zn) =A (R1(x1), . . . ,Rn(xn)),

where R1, . . . ,Rn : X →Z are (ε,δ)-LDP randomizers.

Exercise 7.30. Show that the mechanism of Exercise 7.1 is LDP. With what privacy parameter?

Trivially, DP and LDP are equivalent for datasets of size n = 1. Furthermore, LDP algorithms are
also DP.

Proposition 7.31 (LDP ⇒ DP). An (ε,δ)-LDP algorithm is (ε,δ)-DP.

Proof. Prove Proposition 7.31 using the structural results of Section 7.2.3.

LDP vs DP

The converse of Proposition 7.31 is false. That is, limiting oneself to LDP algorithms only is strictly
more restrictive that doing so with DP algorithms. When using privacy in statistical settings, this can
lead to significant differences in terms of convergence rates. To exemplify this, let us first give a simple
example of an LDP mechanism generalizing heads/tails draws for more than binary output. We recall
that X = {v1, . . . , vK } is finite.

Definition 7.32 (K -ary randomized response). Let B ∼ Bernoulli
( K

K+(eε−1)

)
and X ∼ Uniform(X ). For

all ε> 0 and x ∈X ,

RRR(x,ε) :=
{

x if B = 0,

X if B = 1.

As ε→ 0, K -ary randomized response outputs the true value with probability of order ε/(K + ε),
and a random value with probability of order K /(K +ε).

Proposition 7.33. RRR(·,ε) is ε-LDP.

Proof. Let x, x ′, v ∈ X . If either x ̸= v and x ′ ̸= v , or x = x ′ = v , then P(RRR(x,ε) = v) = P(RRR(x ′,ε) =
v). Otherwise, assume that x = v and x ′ ̸= v without loss of generality. Then we have

P(RRR(x,ε) = v) =
(
1− K

K + (eε−1)

)
+ K

K + (eε−1)

1

K
= eε

K + (eε−1)

P(RRR(x ′,ε) = v) = K

K + (eε−1)

1

K
= 1

K + (eε−1)
.

As the ratio of these probabilities is always between e−ε and eε, we get the result.
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Example 7.34 (LDP vs DP for histograms). Consider the problem of publishing the whole dataset
f (D) = h in the form of its renormalized histogram

hk = 1

n

n∑
i=1

1xi=vk = Dk

n
,

for all k ∈ {1, . . . ,K }.

• (LDP) Writing p0 := 1/(K + (eε−1)), independent K -randomized responses zi = RRR(xi ,ε) allow to
construct an unbiased estimator ĥ(LDP) of h. Indeed, for all k ∈ {1, . . . ,K }, we have

P(zi = vk ) =
{

p0eε if xi = vk ,

p0 otherwise.

As a result,

Nk :=
n∑

i=1
1zi=vk ∼ Binomial(nhk , p0eε)∗Binomial(n(1−hk ), p0),

which has :

– Mean E[Nk ] = nhk p0eε+n(1−hk )p0 = np0(eε−1)hk +np0;

– Variance Var(Nk ) = nhk p0eε(1−p0eε)+n(1−hk )p0(1−p0) ≤ np0eε(1−p0).

As a result,

ĥ(LDP)
k :=

1
n

∑n
i=11zi=vk −p0

p0(eε−1)

is an unbiased estimator of hk , with mean squared loss

E[(hk − ĥ(LDP)
k )2] ≤ (1−p0)eε

np0(eε−1)2

∼
ε→0

K (1−1/K )

nε2 .

• (DP) The ℓ1 sensitivity of f (x1, . . . , xn) = ( 1
n

∑n
i=11xi=vk

)
1≤k≤K is ∆1( f ) = 1/n. As a result, the Laplace

mechanism (b = 2/(nε2)) yields an ε-DP algorithm with output ĥ(LDP)
k such that

E[(hK − ĥ(DP)
k )2]≲

1

n2ε2 .

We observe here a significant discrepancy in the utility, when comparing ε-LDP and ε-DP algorithms : a
factor 1/n is lost. This gap is known to be unavoidable for functions involving averaging [CSS12], hence
restricting the range of application of LDP to large samples.

7.3.2 Statistical queries

First introduced by Kearns [Kea98], the statistical query (SQ) framework is a restriction of PAC-learning,
where the learner is only allowed to obtain approximate averages of the unknown distribution P via
an adversarial oracle, but cannot see any sample. That is, given a tolerance parameter τ> 0, a STAT(τ)
oracle for the distribution P accepts functions r : Rd → [−1,1] as queries from the learner, and can
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answer any value a ∈R such that |EX∼P [r (X )]−a| ≤ τ. Informally, the fact that the oracle is adversarial
is the counterpart to the fact that differential privacy is a worst-case notion. We emphasize that in the
statistical query framework, estimators (or learners) are only given access to such an oracle, and not to
the data themselves. Limiting the learner’s accessible information to adversarially perturbed averages
both restricts the range of the usable algorithms, and effectively forces them to be robust and efficient.

We do not give a fully fledged definition of a statistical query algorithm (see [AK22, Definition 2.1]).
Informally, a “statistical query algorithm with tolerance τ and making T queries” is an interactive algo-
rithm that only requires answers to the functional queries defined above, which is robust to adversarial
error τ on those answers, and that terminates after at most T queries.

Naturally, if actual sample is available, one may always simulate an oracle through empirical aver-
ages. As a result, the SQ framework is directly linked with LDP in following manner.

Proposition 7.35 (SQ ⇒ LDP). If ASQ is a statistical query algorithm that makes at most T queries to
a STAT(τ) oracle, then there exists an ε-LDP algorithm simulating ASQ on n ≍ T /(ε2τ2) samples, which
terminates with high probability.

Proof. See [KLN+11, Theorem 5.7] for the full proof. Given a sample of size n ≍ T /(ε2τ2), the idea is
to divide it into T sub-samples of size 1/(ε2τ2). Then, for query rt : Rd → [−1,1] (t ∈ {1, . . . ,T }), take
answer ât to be the empirical average of rt on the samples of batch t to which the Laplace mecha-
nism has been applied. By Hoeffding inequality, these empirical averages yield a valid STAT(τ) oracle
altogether, which yields the result.

Let us conclude on an illustrative to example, to sum up all the privacy mechanisms on a specific
inference problem.

Exercise 7.36 (Standard inference vs DP vs LDP vs SQ). Consider the statistical model composed of all
the uniform distributions on intervals [0,θ], for θ ∈ (0,1] unknown. Assume classically that we want to
estimate θ, but while making sure that the proposed estimator falls into the different scenarios described
in this chapter. When sample is available, assume that it is iid, denoted by X1, . . . , Xn ∼ Pθ := Unif([0,θ]).

• (PAC) A classical non-private estimator of θ is

θ̂PAC := max
1≤i≤n

Xi .

Twice the empirical mean would also lead to another (suboptimal) estimator).

• (DP) Function f : [0,1]n ∋ (x1, . . . , xn) 7→ max1≤i≤n xi ε-DP has ℓ1 sensitivity ∆1( f ) = 1. Hence, the
Laplace mechanism yields a DP estimator

θ̂DP :=
(

max
1≤i≤n

Xi

)
+Y .

A similar DP version of the empirical average can be written easily.

• (LDP) Applied to each datum, the Laplace mechanism yields a LDP estimator

θ̂LDP :=
(

max
1≤i≤n

Xi +Yi

)
.

A similar LDP version of the empirical average can be written easily.

• (SQ) As θ = min{u ∈ [0,1] | Pθ([u,1]) = 0}, one may estimate it with a divide and conquer strategy
which queries indicator functions ru(x) = 1[u,1](x) at each step. Starting from u = 1/2, next query
would be either 1/4 or 3/4 depending on whether the answer to r1/2 is smaller or greater than the
(known) tolerance parameter τ. The single query r (x) = x would also lead to (a suboptimal) estimator.
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